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Abstract A collection of sets on a ground set Sn (Sn = {1, 2, ..., n}) closed
under intersection and containing Sn is known as a Moore family. The set of
Moore families for a fixed n is a lattice denoted Mn. In this paper we provide
a recursive definition of Mn. This alternative definition puts highlight some
new structural properties of the lattice of Moore families.

1 Introduction

The concept of a collection of sets closed under intersection appears with differ-
ent names depending on the scientific fields. The name Moore family was first
used by Birkhoff in [3] referring to E.H. Moore’s research. But, very frequently,
such a collection on a ground set Sn (Sn = {1, 2, ..., n}) is called closure sys-
tem. This concept is applied to numerous fields in pure or applied mathematics
and computer science. For instance Cohn, Sierksma and van de Vel have used
it in the framework of algebra and topology ([7,14,15]) while Birkhoff, Davey
and Priestley focused on order and lattice theory ([2,10]). Formally a closure
operator is an extensive, isotone and idempotent function on 2Sn (the set of
all subsets of Sn), and a closure system is then the set of its fixed points. In
particular it is well-known that any closure system is a complete lattice. In
1937 Birkhoff ([2]) gave a compact representation of quasi-ordinal spaces (in
other words of collections of sets closed under intersection and union and so
which are distributive lattices). More recently the notion of closure system ap-
pears as a significant concept in computer science with research in relational
databases ([9]), data analysis and formal concept analysis ([12,1,13]). More
precisely, Ganter and Wille defined a mathematical framework for classifica-
tion, and Barbut defined and used Galois lattices about questions raised in
Guttman scales analysis ([1]). Meanwhile, in 1985, equivalent collections of
sets were called knowledge spaces by Doignon and Falmagne ([8]) to study
possible states of knowledge of a student.
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An important fact is that the collection of Moore families on Sn, denoted
by Mn, is itself a Moore family (see Figure 1). Indeed, the system of all Moore
families on Sn contains a maximum element (2Sn) and the intersection of two
Moore families is itself a Moore family. To get an overall view of the properties
of this closure system, see the survey of Caspard and Monjardet [5].
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Fig. 1 On the left, the Hasse diagram of a Moore familyM on U3. On the right, the Hasse
Diagram of the complete set M2 of Moore families on the ground set U2. We have |M2| = 7.

Some researches focus on quantitative properties of this lattice of Moore
families. As an example, Demetrovics et al. in [11] note that the problem of
counting Moore families on n elements is a complex issue for which there is
no known formula. In [4], Burosh et al. consider the issue of counting Moore
families as natural and provide an upper bound. An often supported approach
to try to obtain such a formula involves counting the number of objects for
the first values of n. In [6], Colomb et al. found 1019 families for n = 7.

In this paper we give a new recursive definition of the lattice of Moore
families by building the lattice Mn+1 from the lattice Mn.

2 Preliminary study

2.1 Definitions and notations

We note elements by numbers (1, 2, 3, . . . ). Sets are denoted by capital letters
(A,B,C, . . . ). Families of sets are denoted by cursive letters (A,B, . . . ). Fi-
nally, we denote the sets of families of sets by black board letters (A,B,C, . . . ).
LetM be a family on Sn, we denote (M,⊆), or directlyM (when no confusion
is possible.), the corresponding ordered set. Given a familyM, a subfamily I
ofM is an ideal ofM if it satisfies the following implication for any pair M ,
M ′ in M, M ⊆ M ′ and M ′ ∈ I ⇒ M ∈ I. We shall use IM to denote the
sets of ideals onM. Given a set X in a familyM, there exists a unique ideal
I of M with X as a maximum set (also called the principal ideal generated
by X inM). Let IM(X) denote this ideal. By extension, we denote IMn(M)
the principal ideal generated by M in the lattice Mn. This way, IMn

(M) is
the set of Moore sub-families ofM.
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2.2 Compatible families

A Moore familyM on Sn+1 can be decomposed into 2 parts. The part consist-
ing of the sets ofM containing the element n+1 (denoted byMup), and the
complementary part (denoted by Mlow). If not already present, the element
Sn is inserted intoMlow. Naturally,M⊆Mup ∪Mlow

1. The familyMlow is
clearly a family of Mn. And the familyMup is a Moore family on Sn+1 with
the peculiarity that all its sets contain the element n+1. We will denote Mup

n+1

as the set of Moore families having this property.
Example: LetM be the family given in Figure 1.M can be decomposed into
Mlow = {∅, {1}, {2}, {1, 2}} andMup = {{3}, {1, 3}, {1, 2, 3}}.

To study the matching conditions between a family in Mn and a family in
Mup

n+1, we will say that a family in Mup
n+1 is compatible with a family in Mn

if the union of both families is a Moore family in Mn+1. Figure 2 illustrates
that for a fixed lower part, there are several compatible upper parts.

{1, 2}

{1} {2} ��

{3}

{1, 3}

{1, 2, 3}

{3}

{3}

{1, 2}

{1} {2}
{3}

{1}

{1, 3}

∅

{1, 2, 3}

{1, 2}

{2}

∅

{1, 2, 3}

{3}

{1, 2, 3}

Mlow ∈ M2 Mup ∈ Mup
3

Mup ∈ Mup
3

Mlow ∪ Mup ∈ M3Mlow ∪ Mup ∈ M3

Fig. 2 In the middle, a family in M2 and, on each side, two different compatible families
in Mup

3 . In both cases, the obtained family, on the opposite sides, is itself a Moore family.

2.3 Maximal compatible family

Definition 1 For any integer n ≥ 1, we define two maps from Mn to Mup
n+1:

gn+1(M) = {M ∪ {n+ 1} | M ∈M}
fn+1(M) = {X ∈ 2Sn+1 | {n+ 1} ∈ X and ∀M ∈M \ Sn, M ∩X ∈M}

Map gn+1 defines a one-to-one mapping between Mn and Mup
n+1 (cf. Fig. 3,4).

Proposition 1 Let M ∈ Mn, then ∀Mup ∈ Mup
n+1, the two following asser-

tions are equivalent :

(i) Mup is compatible with M (resp. M\ Sn);
(ii) Mup ⊆ gn+1(M) (resp. Mup ⊆ fn+1(M)).

1 If Sn belongs toM we haveM =Mup ∪Mlow
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Fig. 3 In the middle, M ∈ M2. On left, its image by g3, which consists in adding the
element {3} to each set of the family. Any Moore sub-family of g3(M) is compatible with
M. On right, its image by f3. Any Moore sub-family of f3(M) is compatible withM\ S2.

In other words, let M ∈ Mn, the set of compatible families with M (resp.
M\ Sn) is the set of Moore sub-families of gn+1(M) (resp. fn+1(M)). This
way, gn+1(M) (resp. fn+1(M)) is called the maximal compatible family ofM
(resp.M\ Sn). See Figure 4.

Corollary 1 Let M be in Mn. Then, the set of Moore families compatible
with M (resp. M\ Sn) is IMup

n+1
(gn+1(M)) (resp. IMup

n+1
(fn+1(M))).

3 Recursive decomposition theorem

Definition 2 For any integer n ≥ 1, we define the map hn from Mn to Mn:
hn(M) = g−1n (fn+1(M)).
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Fig. 4 On the left, the set Mn and on the right its isomorphic image Mup
n+1 by gn+1. Let

M ∈ Mn, then, for any M′,M′′ ∈ Mn with M′ ⊆ M and M′′ ⊆ hn(M) we know, from
Proposition 1, that gn+1(M′) (resp. gn+1(M′′)) is compatible withM (resp. withM\Sn).
This way, for anyM,M′ ∈ Mn (resp.M,M′′) such thatM′ ⊆ M (resp.M′′ ⊆ hn(M)),
the familiesM∪ gn+1(M′) andM\ Sn ∪ gn+1(M′′) are Moore families on Sn+1.
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Theorem 1 states that the set of Moore families on Sn+1 can be obtained from
the set of Moore families on Sn.

Theorem 1 For any integer n such that n ≥ 1,

Mn+1 =
⋃
M∈Mn

{M∪ gn+1(M′) | M′ ∈ IMn(M)} ∪⋃
M∈Mn

{M \ Sn ∪ gn+1(M′′) | M′′ ∈ IMn
(hn(M))}.

In other words, there exists a natural bi-partition of Mn+1: the families
containing the set Sn, under the formM∪ gn+1(M′) withM′ a Moore sub-
family of M, and the families not containing Sn, under the form M \ Sn ∪
gn+1(M′′) withM′′ a Moore sub-family of hn(M).

4 Conclusion

In this article we give a new recursive definition of the lattice of Moore families.
We hope this new definition will be a useful tool to tackle some open problems
on Moore families like enumeration problems or Frankl’s conjecture.

References

1. Barbut, M., Monjardet, B., Ordre et classification. Hachette (1970)
2. Birkhoff, G., Rings of sets. Duke Mathematical Journal 3, p.443–454 (1937)
3. Birkhoff, G., Lattice Theory. Third edn. American Mathematical Society (1967)
4. Burosh, G., Demetrovics, J., Katona, G., Kleitman, D., Sapozhenko, A., On the number
of databases and closure operations. Theoretical computer science 78, p.377–381 (1991)

5. Caspard, N., Monjardet, B., The lattices of closure systems, closure operators, and impli-
cational systems on a finite set: a survey. Discrete Applied Mathematics 127, p.241–269
(2003)

6. Colomb, P., Irlande, A., Raynaud, O., Counting of Moore families on n=7. In proceedings
of ICFCA, LNAI 5986, p.72–87 (2010)

7. Cohn, P., Universal Algebra. Harper and Row, New York (1965)
8. Doignon, J.P., Falmagne, J.C., Knowledge Spaces. Springer, Berlin (1999)
9. Demetrovics, J., Libkin, L., Muchnik, I., Functional dependencies in relational databases:
A lattice point of view. Discrete Applied Mathematics 40(2), p.155–185 (1992)

10. Davey, B.A., Priestley, H.A., Introduction to lattices and orders. Cambridge University
Press (1991)

11. Demetrovics, J., Molnar, A., Thalheim, B., Reasoning methods for designing and sur-
veying relationships described by sets of functional constraints. Serdica J. Computing 3,
p.179–204 (2009)

12. Duquenne, V., Latticial structure in data analysis. Theoretical Computer Science (217),
p.407–436 (1999)

13. Ganter, B., Wille, R., Formal concept analysis, mathematical foundation. Berlin-
Heidelberg-NewYork et al., Springer (1999)

14. Sierksma, G., Convexity on union of sets. Compositio Mathematica, 42, p.391-400
(1980),

15. van de Ven, L. M. J., Theory of convex structures. North-Holland, Amsterdam (1993)


